Breath-hold 3D gradient-echo MR imaging of the lung parenchyma: Evaluation of reproducibility of image quality in normals and preliminary observations in patients with disease

Author(s):  
Richard C. Semelka ◽  
N. Cem Balci ◽  
Kathy P. Wilber ◽  
Laurie L. Fisher ◽  
Mark A. Brown ◽  
...  
Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 148
Author(s):  
Kyungsoo Bae ◽  
Kyung Nyeo Jeon ◽  
Moon Jung Hwang ◽  
Yunsub Jung ◽  
Joonsung Lee

(1) Background: Highly flexible adaptive image receive (AIR) coil has become available for clinical use. The present study aimed to evaluate the performance of AIR anterior array coil in lung MR imaging using a zero echo time (ZTE) sequence compared with conventional anterior array (CAA) coil. (2) Methods: Sixty-six patients who underwent lung MR imaging using both AIR coil (ZTE-AIR) and CAA coil (ZTE-CAA) were enrolled. Image quality of ZTE-AIR and ZTE-CAA was quantified by calculating blur metric value, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of lung parenchyma. Image quality was qualitatively assessed by two independent radiologists. Lesion detection capabilities for lung nodules and emphysema and/or lung cysts were evaluated. Patients’ comfort levels during examinations were assessed. (3) Results: SNR and CNR of lung parenchyma were higher (both p < 0.001) in ZTE-AIR than in ZTE-CAA. Image sharpness was superior in ZTE-AIR (p < 0.001). Subjective image quality assessed by two independent readers was superior (all p < 0.05) in ZTE-AIR. AIR coil was preferred by 64 of 66 patients. ZTE-AIR showed higher (all p < 0.05) sensitivity for sub-centimeter nodules than ZTE-CAA by both readers. ZTE-AIR showed higher (all p < 0.05) sensitivity and accuracy for detecting emphysema and/or cysts than ZTE-CAA by both readers. (4) Conclusions: The use of highly flexible AIR coil in ZTE lung MR imaging can improve image quality and patient comfort. Application of AIR coil in parenchymal imaging has potential for improving delineation of low-density parenchymal lesions and tiny nodules.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Weon Jang ◽  
Ji Soo Song ◽  
Sang Heon Kim ◽  
Jae Do Yang

While magnetic resonance cholangiopancreatography (MRCP) is routinely used, compressed sensing MRCP (CS-MRCP) and gradient and spin-echo MRCP (GRASE-MRCP) with breath-holding (BH) may allow sufficient image quality with shorter acquisition times. This study qualitatively and quantitatively compared BH-CS-MRCP and BH-GRASE-MRCP and evaluated their clinical effectiveness. Data from 59 consecutive patients who underwent both BH-CS-MRCP and BH-GRASE-MRCP were qualitatively analyzed using a five-point Likert-type scale. The signal-to-noise ratio (SNR) of the common bile duct (CBD), contrast-to-noise ratio (CNR) of the CBD and liver, and contrast ratio between periductal tissue and the CBD were measured. Paired t-test, Wilcoxon signed-rank test, and McNemar’s test were used for statistical analysis. No significant differences were found in overall image quality or duct visualization of the CBD, right and left 1st level intrahepatic duct (IHD), cystic duct, and proximal pancreatic duct (PD). BH-CS-MRCP demonstrated higher background suppression and better visualization of right (p = 0.004) and left 2nd level IHD (p < 0.001), mid PD (p = 0.003), and distal PD (p = 0.041). Image quality degradation was less with BH-GRASE-MRCP than BH-CS-MRCP (p = 0.025). Of 24 patients with communication between a cyst and the PD, 21 (87.5%) and 15 patients (62.5%) demonstrated such communication on BH-CS-MRCP and BH-GRASE-MRCP, respectively. SNR, contrast ratio, and CNR of BH-CS-MRCP were higher than BH-GRASE-MRCP (p < 0.001). Both BH-CS-MRCP and BH-GRASE-MRCP are useful imaging methods with sufficient image quality. Each method has advantages, such as better visualization of small ducts with BH-CS-MRCP and greater time saving with BH-GRASE-MRCP. These differences allow diverse choices for visualization of the pancreaticobiliary tree in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document